Lovastatin inhibits TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts.
نویسندگان
چکیده
PURPOSE The transdifferentiation of Tenon fibroblasts to myofibroblasts is a pivotal step in filtering bleb scarring. It is mediated by the cytokine TGF-beta, Rho-dependent contractility, and cell-matrix interactions in an interdependent fashion. HMG-CoA-reductase inhibitors (statins) have been shown to inhibit Rho-GTPase signaling; therefore, the authors studied the influence of lovastatin on TGF-beta-mediated myofibroblast transdifferentiation to assess the potential use of statins in wound healing modulation. METHODS Human Tenon fibroblasts were grown in culture, pretreated with lovastatin, lovastatin and mevalonate, or specific inhibitors of farnesyl transferase or geranylgeranyl transferase and were stimulated with TGF-beta1. alpha-Smooth muscle actin (alpha-SMA) and connective tissue growth factor (CTGF) transcription were assessed by real-time PCR. alpha-SMA protein expression and localization were studied by Western blot and confocal immunofluorescence microscopy. Cell contractility was determined in collagen gel contraction assays. Phosphorylation of the signaling proteins Smad-2/3 and p38 were detected by Western blot, and Smad-2/3 localization was determined by confocal immunofluorescence microscopy. RESULTS Lovastatin inhibited TGF-beta-induced CTGF transcription, alpha-SMA expression and incorporation into actin stress fibers, and subsequent collagen gel contraction. These effects were reversed by mevalonate. The inhibition of geranylgeranyl transferase but not farnesyl transferase blocked TGF-beta-induced alpha-SMA expression. Lovastatin decreased TGF-beta-induced p38 activation, whereas Smad-2/3 phosphorylation and nuclear translocation were preserved. CONCLUSIONS Lovastatin inhibits TGF-beta-induced myofibroblast transdifferentiation in human Tenon fibroblasts, most likely by interfering with Rho-signaling. Statins may, therefore, serve to inhibit scarring after filtering glaucoma surgery.
منابع مشابه
p38 inhibitors prevent TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts.
PURPOSE The role of mitogen-activated protein kinase (MAPK) pathways in TGF-beta-induced myofibroblast transdifferentiation of human tenon fibroblasts (HTFs) was investigated to identify potential pharmacologic targets for the inhibition of scarring after glaucoma surgery. METHODS TGF-beta-dependent activation of Smad2, p38, and Erk-1/2 was examined by Western blot analysis. TGF-beta-induced ...
متن کاملExtracellular matrix elasticity modulates TGF-β-induced p38 activation and myofibroblast transdifferentiation in human tenon fibroblasts.
PURPOSE Extracellular matrix and the cytokine TGF-β influence scar formation in an interdependent fashion. In this study, the impact of extracellular matrix elasticity on TGF-β-induced signal transduction and myofibroblast transdifferentiation was examined. METHODS Primary human tenon fibroblasts were seeded on collagen-coated glass coverslips (rigid environment) or collagen or polyacrylamide...
متن کاملRosiglitazone Inhibits TGF-β 1 Induced Activation of Human Tenon Fibroblasts via p38 Signal Pathway
PURPOSE Transdifferentiation of human Tenon fibroblasts to myofibroblasts and subsequent deposition of extracellular matrix is a key step in the scarring after glaucoma filtration surgery. The p38 signaling pathway plays an important role in cell proliferation and differentiation, and its upstream regulators and downstream molecules are widely distributed in the eye. We aimed to investigate the...
متن کاملThe Role of Focal Adhesion Kinase in the TGF-β-Induced Myofibroblast Transdifferentiation of Human Tenon's Fibroblasts
PURPOSE To investigate the role of focal adhesion kinase (FAK) in transforming growth factor (TGF)-β-induced myofibroblast transdifferentiation of human Tenon's fibroblasts. METHODS Primary cultured human Tenon's fibroblasts were exposed to TGF-β1 for up to 48 hours. The mRNA levels of FAK, α smooth muscle actin (αSMA), and β-actin were determined by quantitative real time reverse transcripti...
متن کاملInhibition of myofibroblast apoptosis by transforming growth factor beta(1).
Fibroblast differentiation to the myofibroblast phenotype is associated with alpha-smooth-muscle actin (alpha-SMA) expression and regulated by cytokines. Among these, transforming growth factor (TGF)-beta(1) and interleukin (IL)-1beta can stimulate and inhibit myofibroblast differentiation, respectively. IL-1beta inhibits alpha-SMA expression by inducing apoptosis selectively in myofibroblasts ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 49 9 شماره
صفحات -
تاریخ انتشار 2008